Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 2 de 2
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
PLoS Pathog ; 18(10): e1010734, 2022 10.
Статья в английский | MEDLINE | ID: covidwho-2154305

Реферат

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS2) affected the geriatric population. Among research models, Golden Syrian hamsters (GSH) are one of the most representative to study SARS2 pathogenesis and host responses. However, animal studies that recapitulate the effects of SARS2 in the human geriatric population are lacking. To address this gap, we inoculated 14 months old GSH with a prototypic ancestral strain of SARS2 and studied the effects on virus pathogenesis, virus shedding, and respiratory and gastrointestinal microbiome changes. SARS2 infection led to high vRNA loads in the nasal turbinates (NT), lungs, and trachea as well as higher pulmonary lesions scores later in infection. Dysbiosis throughout SARS2 disease progression was observed in the pulmonary microbial dynamics with the enrichment of opportunistic pathogens (Haemophilus, Fusobacterium, Streptococcus, Campylobacter, and Johnsonella) and microbes associated with inflammation (Prevotella). Changes in the gut microbial community also reflected an increase in multiple genera previously associated with intestinal inflammation and disease (Helicobacter, Mucispirillum, Streptococcus, unclassified Erysipelotrichaceae, and Spirochaetaceae). Influenza A virus (FLUAV) pre-exposure resulted in slightly more pronounced pathology in the NT and lungs early on (3 dpc), and more notable changes in lungs compared to the gut microbiome dynamics. Similarities among aged GSH and the microbiome in critically ill COVID-19 patients, particularly in the lower respiratory tract, suggest that GSHs are a representative model to investigate microbial changes during SARS2 infection. The relationship between the residential microbiome and other confounding factors, such as SARS2 infection, in a widely used animal model, contributes to a better understanding of the complexities associated with the host responses during viral infections.


Тема - темы
COVID-19 , Gastrointestinal Microbiome , Cricetinae , Animals , Humans , Aged , Infant , SARS-CoV-2 , Mesocricetus , Dysbiosis/pathology , Lung/pathology , Inflammation/pathology
2.
Microbiol Spectr ; 9(1): e0053621, 2021 09 03.
Статья в английский | MEDLINE | ID: covidwho-1352542

Реферат

Transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths and declining economies around the world. K18-hACE2 mice develop disease resembling severe SARS-CoV-2 infection in a virus dose-dependent manner. The relationship between SARS-CoV-2 and the intestinal or respiratory microbiome is not fully understood. In this context, we characterized the cecal and lung microbiomes of SARS-CoV-2-challenged K18-hACE2 transgenic mice in the presence or absence of treatment with the Mpro inhibitor GC-376. Cecum microbiome showed decreased Shannon and inverse (Inv) Simpson diversity indexes correlating with SARS-CoV-2 infection dosage and a difference of Bray-Curtis dissimilarity distances among control and infected mice. Bacterial phyla such as Firmicutes, particularly, Lachnospiraceae and Oscillospiraceae, were significantly less abundant, while Verrucomicrobia, particularly, the family Akkermansiaceae, were increasingly more prevalent during peak infection in mice challenged with a high virus dose. In contrast to the cecal microbiome, the lung microbiome showed similar microbial diversity among the control, low-, and high-dose challenge virus groups, independent of antiviral treatment. Bacterial phyla in the lungs such as Bacteroidetes decreased, while Firmicutes and Proteobacteria were significantly enriched in mice challenged with a high dose of SARS-CoV-2. In summary, we identified changes in the cecal and lung microbiomes of K18-hACE2 mice with severe clinical signs of SARS-CoV-2 infection. IMPORTANCE The COVID-19 pandemic has resulted in millions of deaths. The host's respiratory and intestinal microbiome can affect directly or indirectly the immune system during viral infections. We characterized the cecal and lung microbiomes in a relevant mouse model challenged with a low or high dose of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the presence or absence of an antiviral Mpro inhibitor, GC-376. Decreased microbial diversity and taxonomic abundances of the phyla Firmicutes, particularly, Lachnospiraceae, correlating with infection dosage were observed in the cecum. In addition, microbes within the family Akkermansiaceae were increasingly more prevalent during peak infection, which is observed in other viral infections. The lung microbiome showed similar microbial diversity to that of the control, independent of antiviral treatment. Decreased Bacteroidetes and increased Firmicutes and Proteobacteria were observed in the lungs in a virus dose-dependent manner. These studies add to a better understanding of the complexities associated with the intestinal microbiome during respiratory infections.


Тема - темы
COVID-19/immunology , COVID-19/microbiology , Gastrointestinal Microbiome/physiology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents , Biodiversity , Disease Models, Animal , Female , Lung/immunology , Melphalan , Mice , Mice, Transgenic , Virus Diseases/immunology , gamma-Globulins
Критерии поиска